Theoretical Studies on the Gyromagnetic Factors and the Hyperfine Structure Constants for the Tetragonal Copper Center in KTaO₃

Hui-Ning Dong

Institute of Applied Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China

Reprint requests to Dr. H.-N. D.; E-mail: donghn@cqupt.edu.cn

Z. Naturforsch. **60a**, 615 – 618 (2005); received May 31, 2005

The gyromagnetic factors g_{\parallel} , g_{\perp} and the hyperfine structure constants A_{\parallel} and A_{\perp} of the tetragonal Cu²⁺ center in KTaO₃ are theoretically studied in this work. Based on the analyses of the electron paramagnetic resonance results of this center, it is found that the impurity Cu²⁺ occupies the octahedral Ta⁵⁺ site, associated with a nearest-neighbouring oxygen vacancy V_O along the C_4 axis. Due to the electrostatic repulsion of V_O, Cu²⁺ is displaced away from V_O by $\Delta Z (\approx -0.29 \text{ Å})$ along the C_4 axis. The theoretical values of the g and A factors based on the above defect structure and the impurity displacement agreee reasonably with the experimental data.

Key words: Electron Paramagnetic Resonance; Defect Structures; Crystal-field Theory; Cu²⁺; KTaO₃.